| PS 12a Names:
Lab 6: Oscillations | | | | | | | | |--|--|---|--------------------------|------------------|--------------|---------------|-----------| | In this lab you will a | analyze | the behavior of a | mass | s on a sprii | ng oscillati | ng system. | | | Part I: Measuring to Q1: Use the stopwa | _ | ` ' | s of t | he mass or | n a spring. | What is the | period? | | Period= | sec | Frequency = | | _ Hz | | | | | Part II: Analyze the | e Mass | on a Spring Oscil | latoı | [* | | | | | Use Logger Pro to take Export the data from Lo
Save the workspace
Start a new script with | ogger Pro | and import it into MA | | | | | | | Using the modific function t Create a secon Calculate the | odel diso
o the da
ond figu
e SSE (Si | ca with proper title
cussed in the book
ita.
re of the residuals
um of Squared Err
r parameters unti | t, incl
betv
ors). | luding the | damping, | overlay a plo | ot of the | | What are your best- | -fit valu | es? | | | | | | | A =m | ω = | rads/se | c (| φ ₀ = | rads | τ = | sec | | Find the Spring Con | stant ar | nd the damping co | nsta | nt | | | | | k =N/m | b=_ | kg/s | | | | | | | • On a new fig | ure, ove | erlay plots of kinet | ic, po | otential an | d mechani | cal energies. | | | Part III: The Very I Repeat the experim provided. The finite size of the beespecially in the dampit Take data where you rethe beaker and one whethe bottom of the beaker What are your best | ent abo
aker intro
ng mixtur
elease the
ere you re | oduces edge effects,
res with a lot of corn s
mass close to the top
elease the mass close | syrup.
of | | into the d | amping fluid | | | A =m | ω = | rads/se | c (| φ ₀ = | rads | τ = | sec | | Find the Spring Con | ıstant ar | nd the damping co | nsta | nt | | | | k = ______kg/s